Roles of Chloroplast Retrograde Signals and Ion Transport in Plant Drought Tolerance.

نویسندگان

  • Chenchen Zhao
  • Anthony M Haigh
  • Paul Holford
  • Zhong-Hua Chen
چکیده

Worldwide, drought affects crop yields; therefore, understanding plants' strategies to adapt to drought is critical. Chloroplasts are key regulators of plant responses, and signals from chloroplasts also regulate nuclear gene expression during drought. However, the interactions between chloroplast-initiated retrograde signals and ion channels under stress are still not clear. In this review, we summarise the retrograde signals that participate in regulating plant stress tolerance. We compare chloroplastic transporters that modulate retrograde signalling through retrograde biosynthesis or as critical components in retrograde signalling. We also discuss the roles of important plasma membrane and tonoplast ion transporters that are involved in regulating stomatal movement. We propose how retrograde signals interact with ion transporters under stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis.

Chloroplasts are important sensors of environment change, fulfilling key roles in the regulation of plant growth and development in relation to environmental cues. Photosynthesis produces a repertoire of reductive and oxidative (redox) signals that provide information to the nucleus facilitating appropriate acclimation to a changing light environment. Redox signals are also recognized by the ce...

متن کامل

A chloroplast retrograde signal, 3’-phosphoadenosine 5’-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination

Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3'-phosphoadenosine 5'- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating P...

متن کامل

Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis.

Compartmentation of the eukaryotic cell requires a complex set of subcellular messages, including multiple retrograde signals from the chloroplast and mitochondria to the nucleus, to regulate gene expression. Here, we propose that one such signal is a phosphonucleotide (3'-phosphoadenosine 5'-phosphate [PAP]), which accumulates in Arabidopsis thaliana in response to drought and high light (HL) ...

متن کامل

Retrograde signaling from functionally heterogeneous plastids

Structural and functional components of chloroplast are encoded by genes localized both to nuclear and plastid genomes of plant cell. Development from etioplasts to chloroplasts is triggered by light receptors that activate the expression of photosynthesis-associated nuclear genes (PhaNGs). In addition to photoreceptor-mediated pathways, retrograde signals from the chloroplast to the nucleus ac...

متن کامل

Molecular components of stress-responsive plastid retrograde signaling networks and their involvement in ammonium stress.

Plastid retrograde signaling (chloroplast to nucleus) has been proposed to play an important role in the acclimation of plant function to environmental stress. Although several pathways and molecular components, as well as some signals, have been identified in recent years, our understanding of the communication between plastid and nucleus under stress remains fragmentary. This mini-review summ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular sciences

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2018